

Forman Christian College Lahore (A Chartered University) Department of Mathematics

Fall 2021

Dr. Shabnam Malik

(Associate Professor & Chairperson of Mathematics Department) **Email:** <u>shabnammalik@fccollege.edu.pk</u> **Office:** S- 351 (Armacost Science Building) **Office Hours**: Monday to Friday: 11:15 - 11:50 & 01:00 – 01:50

Course Information:

Vector Analysis, MATH 203 (A), 3 credits, Class Room: S-412 Lectures Time: Monday, Wednesday & Friday (12:00 - 12:50) Prerequisite: MATH 102 Text Book: Schaum's Outline of "Theory and problems of Vector Analysis and an Introduction to Tensor Analysis" by Murray R. Spiegel. <u>http://www.uop.edu.pk/ocontents/Vector%20Analysis%20Schaum.pdf</u>

Course Description: This a core course for mathematics major. The topics includes: scalars and vectors, laws of vector algebra, scalar and vector fields, product of two vectors and their applications, scalar and vector triple products, ordinary and partial differentiation of vector fields and its use in basic differential geometry, gradient of a scalar field, divergence and curl of a vector fields, line integrals, surface integrals and volume integrals, divergence and Stokes' theorem.

Course Objectives: Vector Analysis had become an essential part of the mathematical background required of mathematicians and physicists. The objective of the course is to introduce and develop the methods of vector analysis. These methods provide a natural aid to the understanding of geometry and some physical concepts. They are also a fundamental tool in many theories of applied mathematics.

Learning Outcomes: Upon successful completion of this course, the student will be able to:

- Differentiate between scalars and vectors.
- Know laws of vector algebra, and product of vectors.
- Do ordinary and partial differentiation of vectors.
- Use properties of vectors in physical phenomena, e.g. work, velocity etc.
- Know the application of vector differentiation to differential geometry.
- Define scalar and vector fields (gradient, divergence, curl).
- Apply gradient, divergence and curl in geometrical problems.
- Understand directional derivatives, and conservative vector field.
- Do ordinary vector integration and solve line integrals.
- Know the applications of line integrals in physical phenomena.
- Evaluate the integrals of functons and vector fields on surfaces and 3-dimensional domains.
- Express and use Stokes's and Divergence Theorems.
- Use the course material in some upper level courses.

Course Requirements:

- Attendance: Students are expected to attend every class. Student whose attendance is less
 than 60% won't be allowed to take the final exam. Students must arrive at class on time, should
 remain in class for the entire class period and mobile phone should be switched off or on silence.
 Note that there is 5 marks for attendance and behaviour, if a student arrives more than 10
 minutes late or leaves class during lecture or uses mobile in class, he/she will be marked absent.
- Assessment: Course assessment will be through quizzes, attendance and behavior, assignments, midterm, and final exam. Quizzes, mid term exam and final exam will be conducted on campus for all students. Assignments will be conducted on Moodle along with its viva on Zoom or in person. There is no make up for missed quizzes but best 3 out of 4 will be counted. Make up for midterm and final exam is possible only under extremes cases if student provides strong documentary evidence within three days. In case of make up exam there will be a 0-20% deduction in marks depending upon case to case basis.
- Academic dishonesty or cheating: Academic dishonesty or cheating will result in zero points and will be referred to AIC (Academic Integrity Committee) at FCC for necessary action.

Grades	Quality Points	Numerical Value
А	4.00	93-100
A-	3.70	90-92
B+	3.30	87-89
В	3.00	83-86
B-	2.70	80-82
C+	2.30	77-79
С	2.00	73-76
C-	1.70	70-72
D+	1.30	67-69
D	1.00	60-66
F	0.00	59 or below

Course Evaluation: Grading will be based on following criteria:

Attendance and Behaviour	05 %
Assignments (2)	05 %
Quizzes (4)	20 %
Mid Term	30 %
Final Exam	40 %

Week	Topics	Assessments
1	Discussion of Course plan and Overview of Course Syllabus	
Nov 01, 03, 05	Chapter 1 (Vectors and Scalars)	
	 Scalars and vectors, resultant vector, unit vector, laws of vector 	
	algebra, components of a vector, position vector	
	 Related problems 	

		3
2	 Equation of straight line in vector form 	
Nov 08, 10, 12	 Non-collinear and non-coplanar vectors 	
00, 10, 12	 Direction angles and direction cosines 	
	✤ Scalar and vector fields	
3	Chapter 2 (The Dot and Cross Product)	Quiz-1
Nov	 Dot or scalar products and its applications 	Nov 17 (Wed)
15, 17, 19	 Cross or vector products and its applications 	
4		
4 Nov	 Scalar and vector triple product and its applications 	
22, 24, 26	Reciprocal sets of vectors	
5	Chapter 3 (Vector Differentiation)	
Nov 29 Dec 01, 03	 Ordinary derivatives of vectors, space curve 	
Dec 01, 00	 Differentiation formulae and related problems 	
6	 Partial derivatives of vectors 	Quiz-2
Dec	 Application of vector differentiation to differential geometry 	Dec 08 (Wed)
06, 08, 10		
7	 (continued) Application of vector differentiation to 	Assignment 1
Dec 13, 15, 17	differential geometry	
<u> </u>	♦ MID TERM EXAM	MID TERM
Dec 20		Dec 20 (Mon)
9	Chapter 4 (Gradient, Divergence and Curl)	
Jan	 The vector differential operator del , Gradient, Divergence and 	
03, 05, 07	Curl and related problems	
	·	
	 Formulae involving differential operator del and related 	
10	problems	
10	 Unit normal to a surface 	
Jan 10, 12, 14	 Directional derivative 	
	 Conservative vector field 	
11	Chapter 5 (Vector Integration)	
Jan 17, 19, 21	 Ordinary vector integration and related problems 	
17, 13, 21	✤ Line integrals	
12	 Applications of line integrals in physical phenomena 	Quiz-3
Jan	 Surface integrals and related problems 	Jan 26 (Wed)
24, 26, 28		, , ,
13 Jan 31	 (continued) Surface integrals and related problems 	Assignment 2
Feb 02, 04	 Volume integrals and related problems 	
14	Chapter 6 (The Divergence and Stokes's Theorem)	
Feb	Divergence Theorem	
07, 09, 11	✤ Stokes's Theorem	
15	 Problems related to divergence and Stokes's theorem 	
Feb		Quiz-4
14, 16, 18		Feb 16 (Wed)