

Forman Christian College (A Chartered University) Department of Mathematics Spring 2022

Instructor Information:

Name: Dr. Ahmad Mahmood Qureshi

(Associate Professor & Dean Faculty of Computer and Mathematical Sciences)

Office: S - 204 (Armacost Building)

Office Hours: Tuesday and Thursday (12:30 PM to 02:00 PM). OTHERWISE GET APPOINTMENT FIRST

Email: <u>mahmoodqureshi@fccollege.edu.pk</u>

Course Information:

Course Code and Title: MATH 303: Discrete Mathematical Structures Credits: 3

Prerequisite: Math 101 (Pre-Calculus and Trigonometry) or A-level Mathematics or Intermediate Mathematics

Class Room: S - 412

Lectures Time: Tuesday and Thursday (11:00 AM – 12:15 PM)

Text Book: Discrete Mathematics with Applications, 4th Edition by Susanna S. Epp.

Reference: Discrete Mathematics and its Applications, 7th Edition by Kenneth H. Rosen.

Course Introduction:

Discrete Mathematics describes processes that consist of a sequence of individual steps (as compared to calculus, which describes processes that change in a continuous manner). The principal topics presented in this course are:

Propositional logic, propositional equivalence, valid and invalid arguments, predicate logic and quantifiers, methods of proofs (direct and indirect proofs), mathematical induction and the well-ordering principle, relations and functions, pigeonhole principle, counting techniques, introduction to graphs.

Course Objectives:

The purpose of this course is to:

1. Provide solid foundation of mathematical logic that lays the ground of mathematical reasoning and mathematical argument.

- 2. Develop the ability on performing combinatorial analysis to solve counting problems.
- 3. Prepare the students to develop mathematical foundations for courses in computer science and graph theory.

Learning Outcomes:

After successfully completing this course, the students would be able to:

- 1. Write an argument using logical notation and determine if the argument is valid or not.
- 2. Demonstrate the ability to outline a proof structure by applying suitable proof techniques.
- 3. Count without enumerating objects using counting techniques.
- 4. Use their skills to work with discrete structures that include sets, relations, functions and graphs.
- 5. Develop the mathematical know-how required for an in-depth study of the science and technology of the computer age.

Course Requirements:

Students are expected to attend every class. A student whose attendance is less than 70% won't be allowed to take the final exam.

Students must arrive at class on time and **those coming after attendance call won't be marked present. Inside the class room Mobile phones will remain switched off.**

Working regularly, understanding the lectures, doing assignments will be very helpful in quizzes, mid-term and final to get a good grade. Your knowledge will be a reflection of your grades.

We shall prefer to conduct quizzes/midterm on campus if the situation allows. In any case the mode of exam will be communicated in advance. There will be **no make up for missed quizzes.** Make up for midterm and final exam is possible only under extreme cases if student provides strong documentary evidence **within 3 days** after missing the Mid/Final. In case of makeup exam there will be a 0- 20% deduction in marks depending upon case-to-case basis. Medical Certificate will be acceptable if it is verified by the medical officer of FCCU.

Course Evaluation:

Grading will be based on following criteria:

Class Participation and behavior	10%
Quizzes/Assignments	20%
Mid Term	30%
Final Exam	40%

<u>Grades</u>	Quality Points	Numerical Value	Meaning
A	4.00	93-100	Superior
A-	3.70	90-92	
B+	3.30	87-89	
В	3.00	83-86	Good
B-	2.70	80-82	
C+	2.30	77-79	
С	2.00	73-76	Satisfactory
C-	1.70	70-72	
D+	1.30	67-69	
D	1.00	60-66	Passing
F	0.00	59 or below	Failing

Course Outline:

Week	Topics	Pages in Text Book
1	Discussion of Course Plan Logical Form and Logical Equivalence	Pages: 23 - 38
2	Conditional Statements	Pages: 39 – 50
3	Valid and Invalid Arguments	Pages: 51 - 63
4	Predicates and Quantified Statements	Pages: 96 - 108

			4
5	Direct Proof and Counter Example I Direct Proof and Counter Example III	Pages: 146-163 Pages: 170-179	
6	Indirect Argument: Contradiction and Contraposition Indirect Argument: Two Classical Theorems	Pages: 198-207 Pages: 207-213	
7	Mathematical Induction I Mathematical Induction II	Pages: 244-258 Pages: 258-268	
8	Relations on Sets Reflexivity, Symmetry and Transitivity	Pages: 442-449 Pages: 449-459	
9	MID-TERM EXAM Equivalence Relations Modular Arithmetic	Pages: 459-477 Pages: 478-498	
10	Counting and Probability Possibility Tree and Multiplication Rule	Pages: 516-524 Pages: 525-539	
11	Counting Elements of Disjoint Sets: The Addition Rule The Pigeonhole Principle	Pages: 540-553 Pages: 554-565	
12	Counting subsets of a Set: Combinations The r-Combinations with Repetition Allowed	Pages:565-584 Pages:584-590	
13	Pascal's Formula and the Binomial Theorem	Pages: 592-604	
14	Graphs and Trees Trails, Paths and Circuits	Pages: 625-642 Pages: 642-660	
15	Matrix Representations of Graphs Isomorphism of Graphs	Pages: 661-675 Pages: 675-683	
16	Trees FINAL EXAM (FROM THE WHOLE COURSE)	Pages: 683-694	