FORMAN CHRISTIAN COLLEGE UNIVERSITY COMP451: Compiler Construction (2+2 Credit Hrs) Course Outline and Lesson Plan

Instructor Information:

Name:M. Rauf ButtContact:raufbutt@fccollege.edu.pkOffice:S-214Office Hours:TBD

Pre Requisites:

- Data Structures & Algorithms
- Theory of Automata

Course Material:

- 1. Lab/Class Activity Handouts
- 2. Class Handout
- 3. Video Lectures

Text Books:

- 1. Compilers: Principles, Techniques, and Tools, second edition; Aho, Lam, Seithi, and Ullman
- 2. Programming in C; By Dennis Richie
- 3. Flex & Bison; By John Levine

Course Objectives:

Differentiate between different levels of programming languages. Understand the role of front-end and backend of a compiler. Recognize different types of grammars. Understand and define grammars in BNF, syntax diagrams, regular expressions. Define tokens using the notation of regular expressions. Convert regular expressions into finite automata. Implement a lexical analyzer. Define a programming language syntax using a CFG. Construct a parse tree for a given program. Differentiate between top-down and bottom-up parsing strategies. Understand LL (k) and LR (k) grammars. Write a top-down parser using recursive-descent and LL (1) parsing methods. Understand simple-precedence, operator precedence and SLR parsing methods. Understand semantic analysis (type checking, scope checking etc.) Understand various types of runtime environments. Understand code generation techniques. Understand code optimization techniques.

Course Learning Outcomes (CLOs)

CLO's	Description	Level
CLO:1	Describe the architecture, and functions of different	C1
	components of a compiler	(Remember)
CLO:2	Describe how a program gets executed and what are different	C2
	programs other than compiler that help execute the program.	(Understand)
CLO:3	Application of formal notations to define a programming	C3 (Apply)
	language	
CLO:4	Design and implement different segments of lexical and	C3 (Apply)
	syntax analyzer using an appropriate programming language.	
CLO:5	Integrate different smaller segments and formulate a	C3 (Apply)
	complete working lexical and syntax analyzer.	
CLO:6	Differentiate and compare open source compiler, interpreter	C4 (Analyze)
	and cross compilers available.	

Mapping of CLO's to PLO's

PLOs	CLO:1	CLO:2	CLO:3	CLO:4	CLO:5	CLO:6
Computing Knowledge						
Problem Analysis						\checkmark
Design and development of solutions						
Investigation						\checkmark
Modern Tool Usage						

Week	Theory Session (1 Hr 50 Min)	Lab Session (1 Hr 50 Min)		
1	 Introduction to the course. Introduction to compilers Phases of compilation. An overview of phases of compilers and how these work. An example showing how a very simple line of code is passed through all the phases of compiler. 	A primer in C Programming Language Basic program structure Variables and Pointers Programming constructs (loops, control structures) User defined functions		
2	 Cousins of compilers System programs that help compiler execute a program completely. Looking into how a C program is expanded while execution. Difference between .c, .i, .s, and .o files. Explaining linking and loading. Difference between static and dynamic linking. 	 A primer in C Programming Language Arrays Strings Dynamic memory allocation. Structures in C 		
3	 Lexical Analysis Working of a lexical analyzer Formal definition of tokens, lexemes, patterns. Identification of tokens Regular Languages Regular Expressions 	Quiz 1 Lab 1		
4	 Lexical Analysis Formal Languages Lexical Specification Finite Automata Regular Expressions to NFA 	Lab 2		
5	 Lexical Analysis NFA to DFA Implementation of DFA Problem solving session for Lexical Analysis Syntax Analysis Introduction to Parsing Context Free Grammar Left and Right Derivations 	Quiz 2IntroductiontoProgrammingProgrammingAssignment1 Uploaded		
6	 Syntax Analysis Left and Right Derivations Problem solving session for left and right derivation Ambiguity Why ambiguity? 	Lab 3		

	 How to eliminate it? Abstract Syntax Trees Basic introduction How to create and traverse an AST 	
7	 Syntax Analysis Recursive Descent Parsing Left Recursion Predictive Parsing 	Lab 4 Quiz 3 Programming Assignment 1 Due
8	 Syntax Analysis FIRST and FOLLOW 	Lab 5
9	Revision Session	Mid Exam (Course covered till end of week 8)
10	 Syntax Analysis LL1 parsing table Introduction to Bottom Up Parsers Shift Reduce parsing 	Lab Exam (Tentative)
11	 Syntax Analysis Operator Precedence parser Introduction to Bison 	Lab 6 Programming Assignment 2 Uploaded
12	 Syntax Analysis LR(0) Parser SLR(1) Parser LALR(1) Parser 	Lab 7 Quiz 4
13	 Syntax Analysis CLR(1) Parser Ways to represent semantic rules: Syntax Directed Definition Syntax Directed Translation 	Lab 8 Programming Assignment 2 Due Class Project Uploaded
14	 Difference between SDD and SDT Types of SDD S Attributed L Attributed Examples of SDD Examples of SDT 	Lab 9 Quiz 5
15	 Intermediate Code Generation Why intermediate code Types of Intermediate Code Syntax tree Three Address Code Implementation of three address code Quadruple Triple Indirect Triple 	Lab 10

	 Three address code for flow of control statements Three address code for arrays Three address code for case statements 	
16	Code Optimization	Class Project Due
	 Detecting loops 	
	 Basic Blocks 	
	 Program flow graphs 	
	o DAG	

Note that this outline is not carved on stone. Course staff / instructor reserves all rights to make appropriate changes as per needed.

Assessment Criteria

•	In Class Quizzes	15%
•	Labs	20%
•	Mid Semester Exam	20%
•	End Semester Exam (Comprehensive)	30%
•	Programming Assignments / Home Work	7%
•	Class Project	8%

NOTE:

- This is a lab course and we will conduct lab sessions almost every week.
- Labs will be conducted in class and hence only those students will perform lab who are present in the class.
- Students will have to prepare a report for every lab. Format of the lab will be uploaded on Moodle course page.
- We may have 4 to 6 quizzes. If number of quizzes is greater than 5, we may drop one quiz.
- Assignments/Home works will be uploaded and **MUST** be submitted within the deadline specified on handout.
- There will be **no retake for any instrument.**
- In case if any student under special circumstances is allowed to take entire course online, he/she will have to attempt the labs online within the given time frame.
- Online students (if any) will have to go for an online mid exam followed by a viva.
- More details will be provided in the introductory lecture during first week of this semester.
- Online students should feel free to ask any query via email or we can have an online zoom meeting.
- **Students are advised to attend all assigned lectures**. It is entirely the students' responsibility to recover any information or announcements presented in lectures from which they were absent.
- It is mandatory to maintain a minimum of 75% attendance.
- In case if the attendance drops below the given threshold student will have to present written permission from the HoD to appear in the MID and or Final Exam.
- All work that you submit in this course must be your own.
- Unauthorized group efforts are considered academic dishonesty.
- You may discuss homework in a general way with others, but you may not consult anyone else's written work. You are guilty of academic dishonesty if:
 - You examine another's solution to an assignment
 - You allow another student to examine your solution to an assignment
 - You fail to take reasonable care to prevent another student from examining your solution and that student does examine your solution.
- **Cheating, plagiarism and other forms of academic fraud** are taken very seriously. University Policy of plagiarism will be applicable in the case.
- Attendance does not carry any graded marks. However, be very cautious as we may have pop up quizzes in class.