FORMAN CHRISTIAN COLLEGE UNIVERSITY CSCS306: Embedded Systems (2+2 Credit Hrs) Course Outline and Lesson Plan

Instructor Information:

Name:M. Rauf ButtContact:raufbutt@fccollege.edu.pkOffice:S-214Office Hours:TBD

Pre Requisites:

- Digital Logic Design
- Programming I
- Programming II
- Web Development (optional)
- Mobile Development (Optional)

Course Material:

- 1. Lecture Slides
- 2. Lab/Class Activity Handouts
- 3. Class Handouts
- 4. Reading Assignments
- 5. Video Lectures

Reference Books:

No text book for this course.

Students will be assigned reading material in the form of handouts / web links.

Programming Languages

- C / C++
- Java / App Inventor A2I (mobile application)
- Python
- HTML-5
- PHP
- JSON

Course Objectives:

The objective of this course is

- To emphasize on comprehensive treatment of embedded hardware using microcontrollers like Arduino UNO, ESP32, ARM Cortex M4 and PIC.
- To enable students to understand how to program different microcontrollers.
- To make students understand how to interface different sensors with microcontrollers.
- To make students learn different concepts of RTOS.
- To make students understand different ML algorithms and apply the knowledge to design intelligent embedded systems.

Course Learning Outcomes (CLOs)

CLO's	Description	Level
CLO:1	Describe the architecture, and functions of different	C1
	components of a microcontroller	(Remember)
CLO:2	Describe how an embedded program gets executed on a	C2
	microcontroller and how to interface various sensors and	(Understand)
	actuators to a microcontroller.	
CLO:3	Interface hardware and write embedded software for the	C3 (Apply)
	hardware.	
CLO:4	Design and implement different aspects of multi-threaded	C3 (Apply)
	program on an embedded device.	
	Apply different ML algorithms on edge devices.	
CLO:5	Integrate different concepts learnt and apply these to design	C3 (Apply)
	and create a working model of the problem in hand.	
CLO:6	Differentiate, compare and analyze results of different	C4 (Analyze)
	software/hardware for a specific problem,	

Mapping of CLO's to PLO's

PLOs	CLO:1	CLO:2	CLO:3	CLO:4	CLO:5	CLO:6
Computing Knowledge	\checkmark					
Problem Analysis						
Design and development of solutions						
Investigation						\checkmark
Modern Tool Usage						

Week	Theory Session (1 Hr 50 Min)	Lab Session (1 Hr 50 Min)
1	Introduction to the course. Basics of Electronics (Optional) The Arduino • Pin out of an Arduino UNO board.	C for Arduino
	C for Arduino	
2	 The Arduino (cont) C for Arduino Digital IO and PWM for Arduino. Interfacing LEDs and 7-segment displays with an Arduino 	Quiz 1 Lab 1
3	 The Arduino (cont) Switch interface with Arduino Key pad interface Playing with analog sensors (LDR, LM35DZ). 	Lab 2
4	 Sensors / Actuators LCD Controlling DC and Servo motors Using H-bridge IC. 	Lab 3
5	 Sensors / Actuators Servo Motors and Joy stick interface Enhancing IO functionality of a microcontroller with a shift register Creating custom libraries in Arduino 	Quiz 2 Lab 4 Programming Assignment 1 Uploaded
6	 Sensors / Actuators The I2C (Inter Integrated Circuit) bus interface. The PIR motion sensor The Blue tooth module. 	Lab 5
7	 Arduino and timers Timers types Timers registers Implementing timers to create precise delays. 	Lab 6 Quiz 3 Programming Assignment 1 Due
8	Real Time Operating System RTOS on Arduino • Introduction to FreeRTOS • Creating a task • Deleting a task • Assigning priorities to a task • Suspending a task • Resuming a task • Blocking a task • Communication between tasks.	Lab 7
9	 Dual core functionality of ESP32 Dual core Vs Single core 	Mid Exam (Course covered till end of week 8)

	Running two tasks on two different cores	
	 Defining task handle Creating task 	
	 Defining task Defining task function 	
10 - 11	Understanding Internet of Things	Lab Exam (Tentative)
	• Storing sensor data to remote server.	Lab 8
	• Controlling a device remotely while updating	Programming Assignment
	its status on web server.	2 Uploaded
	• Storing sensor data to Google sheets.	Quiz 4
	• Retrieving Google sheet data using python	
12 - 13	Embedded machine Learning	Lab 9
	Naïve Baye's classifier	Quiz 5
	• Introduction to probability	Lab 10
	\circ Bayes theorem	
	• Coding Bayes' theorem using C	Programming Assignment
	• The Naïve Bayes' classifier (Coding	2 Due
	the classifier from a to z)	Class Project Uploaded
	 Understanding sklearn 	
	 Sikit-learn workflow 	
	• Making your data ready for sklearn	
	 Dealing with missing data 	
	• Choosing the right model for machine	
	learning	
	\circ How to fit the model and making	
	predictions	
	Gaussian Naïve Bay's classifier	
	• Understanding the math	
	 Implementing the classifier on an edge device (microcontroller) 	
	device (interocontroner)	
14 - 15	Embedded machine Learning	Lab 11
	Understanding Linear Regression	Lab 12
	• From equation of a line to equation of	Quiz 6
	a hyper plane.	
	• Derivative of a matrix	
	 Linear Regression in 2D 	
	• Linear regression with multiple	
	features.	
	• Gradient Desent inside out.	
	Understanding Logistic Regression	
	• The perceptron algorithm	
	• Problem with the perceptron algorithm	
	• Problem with sigmoid based results.	
	 Applying GD to Logistic Regression Sty is the limit 	
16	Sky is the limitCushion week	
10	Revision	
	Class Project submission.	
	Class Project subinission. is outline is not carved on stone. Course staff / instructor reserves all rights to make approx	

Note that this outline is not carved on stone. Course staff / instructor reserves all rights to make appropriate changes as per needed.

-

Assessment Criteria

٠	In Class Quizzes	15%
٠	Home Work / Assignments	10%
٠	Labs	25%
٠	Mid Exam	15%
٠	Class Project	10%
•	End Semester Exam (Comprehensive)	25%

NOTE:

- This is a lab course and we will conduct lab sessions almost every week.
- Labs will be conducted in class and hence only those students will perform lab who are present in the class.
- We may have 4 to 6 quizzes.
- Assignments/Home works will be uploaded and **MUST** be submitted within the deadline specified on handout.
- There will be **no retake for any instrument.**
- In case if any student under special circumstances is allowed to take entire course online, he/she will have to attempt the labs online within the given time frame.
- Mid Exams will be conducted face to face.
- Online students (if any) will have to go for an online mid exam followed by a viva.
- More details will be provided in the introductory lecture during first week of this semester.
- Online students should feel free to ask any query via email or we can have an online zoom meeting.
- **Students are advised to attend all assigned lectures**. It is entirely the students' responsibility to recover any information or announcements presented in lectures from which they were absent.
- All work that you submit in this course must be your own.
- Unauthorized group efforts are considered academic dishonesty.
- You may discuss homework in a general way with others, but you may not consult anyone else's written work. You are guilty of academic dishonesty if:
 - You examine another's solution to an assignment
 - You allow another student to examine your solution to an assignment
 - You fail to take reasonable care to prevent another student from examining your solution and that student does examine your solution.
- **Cheating, plagiarism and other forms of academic fraud** are taken very seriously. University Policy of plagiarism will be applicable in the case.
- Attendance does not carry any graded marks. It is necessary to maintain a minimum level of 70% attendance. Be very cautious as we may have pop up quizzes in class.