

Forman Christian College, Lahore (A Chartered University) Department of Mathematics Spring 2023

Instructor Information:

Name: Dr. Ahmad Mahmood Qureshi

(Associate Professor & Dean Faculty of Computer and Mathematical Sciences)

Office: S - 204

Office Hours: Tuesday & Thursday (12:30 PM to 02:00 PM)

OTHERWISE GET APPOINTMENT FIRST.

Email: <u>mahmoodqureshi@fccollege.edu.pk</u>

Course Information:

Course Code and Title: MATH 403/CSCS 403: Graph Theory (4 credits)

Prerequisite: COMP 113: Discrete Mathematics or MATH 303: Discrete Mathematical Structures Class Room: S - 216

Lectures Time: Monday & Wednesday (02:00 PM – 03:40 PM)

Text Book:

1. Introduction to Graph Theory by Gary Chartrand and Ping Zhang, McGraw-Hill publication, 2005.

Reference Book:

- 1. Introduction to Graph Theory 4th Edition by Robin J. Wilson, Addison Wesley Longman Limited.
- 2. Introduction to Graph Theory 2nd Edition by Douglas B. West, Prentice-Hall.

Course Objectives:

The purpose of this course is to:

- 1. provide a basic knowledge of the notions and important results in Graph Theory.
- 2. develop the ability to understand rigorous proofs by applying various proof techniques.
- 3. prepare the students to apply the concepts of Graph Theory to work out practical problems.

Learning Outcomes:

After successfully completing this course, the students would be able to:

- 1. comprehend graph theoretical notions and fundamental results.
- 2. write short proofs of new problems.
- 3. use their knowledge and skills to work with applications.

Course Requirements:

Students are expected to attend every class. I will follow the university's attendance policy as indicated in *Baccalaureate Student Handbook* especially the rule that student whose attendance is less than 70% won't be allowed to take the final exam.

Students must arrive at class on time and **those coming after attendance call won't be marked present. Inside the classroom Mobile phones will remain switched off** and **no one will sleep.**

Working regularly, understanding the lectures, doing assignments will be very helpful in quizzes, mid-term and final to get a good grade. Your ability to problem solving will be a reflection of your grades.

Quizzes/Exams Distribution: Quizzes/Exams will be distributed in the class but if anyone is going to be absent then he/she should get quizzes from the class representative. Quizzes/Exams will be **discussed** within **first three days only** (after the quiz/exam).

Course Evaluation:

Grading will be based on following criteria:

Class Participation and behavior	10%
Quizzes and Assignments/presentation	25%
Mid Term	25%
Final Exam	40%

Grading Legend

<u>Grades</u>	Quality Points	Numerical Value	<u>Meaning</u>
A	4.00	93-100	Superior
A-	3.70	90-92	
B+	3.30	87-89	
В	3.00	83-86	Good
B-	2.70	80-82	
C+	2.30	77-79	
С	2.00	73-76	Satisfactory
C-	1.70	70-72	
D+	1.30	67-69	
D	1.00	60-66	Passing
F	0.00	59 or below	Failing

Course Outline:

Week	Topics	Pages in Text
	1) Discussion of Course Plan	ВООК
1	 Discussion of Course Flain Introduction to Graph Theory 	Pages: 1_9
•	3) Basic Terminology and Examples	Pages: $8 - 17$
	5) Dusie Terminology and Examples	1 4 2 6 5 . 0 17
	1) Connected Graphs-I	Pages: 9 – 19
2	2) Connected Graphs-II	Pages: 9 – 19
	1) Common Classes of Graphs	Pages: 19 – 23
3	2) Operations on Graphs	Pages: $23 - 25$
	1) The Degree of a Vertex	Dages: 31 37
4	2) Regular Graphs	Pages: $31 - 37$ Pages: $38 - 47$
-		1 4605. 50 12
	1) Degree Sequence	Pages: 43 – 47
5	2) Isomorphic Graphs	Pages: 55 – 63
	1) Bridges and Trees	Pages: 85 – 89
6	2) Properties of Trees	Pages: 89 – 94
	1) Properties of Trees cont	Pages: 89 _ 94
7	2) Minimum Spanning Tree	Pages: $94 - 100$
-	2)	1000
	MID-TERM	
8	Mid-Term Course: Topics covered in first 7 weeks	
	1) Cut-Vertices	Pages: 107 – 111
9	2) Vertex connectivity	Pages: 115 – 118
	1) Edge Connectivity	Pages: 118-124
10	2) Eulerian Graphs	Pages: 133-140
	1) Hamiltonian Graphs-I	Pages: 140 – 152
11	2) Hamiltonian Graphs-II	Pages: 140 – 152
	1) Planar Graphs-I (Fuler Identity)	Pages: 227-234
12	2) Planar Graphs-II (Kuratowski's Theorem)	Pages: 227 234 Pages: 235- 241
	_) (
	1) Graph Coloring	Pages:259-262
13	2) Vertex Coloring	Pages: 267-275
	1) Edge Coloring	Pages: 280-288
14	2) Digraphs	Pages: 161-164
15	1) Tournaments	Pages: 169-172
	1) Fournaments	1 4505. 107-172
16	FINAL EXAM (FROM THE WHOLE COURSE)	