

FORMEN CHRISTIAN COLLEGE, LAHORE (A Chartered University) Chemistry Department

Spectroscopy Organic Compounds CHEM 462 Credits: 04 (3+1) Prerequisite CHEM 260 or CHEM 261 or CHEM 361 Course Instructor: Dr Seemal Jelani Email: seemaljelani@fccollege.edu.pk

Visiting hours: 12:00-1:00 pm (except Wednesday)

Organic spectroscopy course. Undergraduate organic students only see the "tip of the iceberg" of spectroscopy. This course will teach students how spectroscopic methods reveal complex organic molecule structures.

This is a course in Organic Spectroscopy. Spectroscopy is presented in undergraduate organic classes, but students only see the proverbial "tip of the iceberg" in their undergraduate classes. This course is intended to give students a more complete picture of how spectroscopic methods are used to elucidate the structure of complex organic molecules

This course is designed to enhance student knowledge and skills in the specific area of Organic spectroscopic studies. This covers Study of IR spectroscopy, Mass spectroscopy and NMR spectroscopy in order to acquire the skills of sstructure elucidation, functional groups identification by IR spectroscopy and fragmentation pattern of main classes of organic compounds. This course covers 1-D proton NMR, C-13 NMR, and basic 2-D NMR techniques. Laboratory classes use standard lab equipment, modern instrumentation, and classical methods to conduct experiments. Learn data interpretation and conclusion-drawing.

Outcomes as per the course objectives:

At the end of the course a student is expected to:

- Use spectroscopic equipment such as UV, MS, IR, NMR spectrometers.
- Identify organic compounds by analysis and interpretation of spectral data.
- Explain common terms in NMR spectroscopy such as chemical shift, coupling constant, and anisotropy and describe how they are affected by molecular structure
- Analyze and interpret 1D and 2D NMR spectra.
- Understand mass spectrometry, ionization techniques, fragmentation pattern of main classes of organic compounds.
- Perform the most commonly used NMR experiments, and to interpret and document their results

Catalogue Course Content

Study of IR, Mass and NMR spectroscopy as tools of structure elucidation, functional groups identification by IR spectroscopy, fragmentation pattern of main classes of organic compounds, 1-D proton and C-13 NMR spectroscopy and fundamental 2-D NMR techniques.

Reading Material:

- Organic Structural Spectroscopy, 2nd ed. by Lambert, et al. (ISBN 978-0-321-59256-9)
- Introduction to Spectroscopy 5th Edition Donald L. Pavia
- Uundergraduate organic text (Solomons, Wade, etc.).

Laboratory skills:

Students will learn basic organic spectroscopic laboratory techniques used for the preparation, isolation, purification and identification of organic compounds. Some instrumental techniques would also be studied by students (e.g. gas chromatography, infrared spectroscopy, and nuclear magnetic resonance spectrometry). Students will also be expected to maintain a lab-grade notebook

SLO's

The interpretation of UV, IR and NMR data in the elucidation of the structure of an unknown compound is emphasized in a laboratory experiment which reinforces the concepts of UV, IR MS and NMR spectroscopy.

Before starting lab work, students must learn about procedures, chemicals, equipment, risks, safety, and disposal. The student must complete the pre-laboratory activity to work in the lab. No makeup labs exist. Students must clean their lab space before leaving or their grade will drop

No	Rubric	Weightage
		%
1	Attendance & Class participation	05
3	Quizzes	10
4	Assignment	10
5	Lab-assignment	10
6	Presentation	10
7	Mid exam	15
7	Final lab exam	15
8	Final Exam	25
9	Total	100

Assessment

Eligibility criteria

A student must be regular and punctual. Generally, he or she should attend all classes. 80 percent attendance is expected to sit for the final exam.

Week Plan/Semester Breakup

Week	Course content	Assessment
Week-01	Introduction to Organic Spectroscopic	
	Techniques	
	Discussing course outlines	
	Students' introduction	
	Introduction to electromagnetic radiations	
	Introduction to NIVIR Types of interaction (EMR) with matter	
	Absorption Based Spectroscopy	
Week -02-03	Introduction to NMR Theory of NMR	Quiz-01
WEER -02-05	Magnetic shielding by electrons The NMR	
	spectrometer Chemical shift The number of	Assignment 1
	signals Area of peak Spin-Spin Splitting.	
	Complex splitting Coupling constants	
	Stereochemical nonequivalence of protons	
	Interpretation of Proton NMR spectra	
	Further discussion	
	NMR-Factors affecting shielding	Qui- 02
Week-04-06	effect/chemical shift	Quiz-02
	Electronegativity, Hybridization, Magnetic	Assignment 2
	Anisotropy, Hydrogen bonding, Angle strain	An academic visit that
	How to find structures by Chemical shifts	must be approved by the
	How to find structures by Spectra	visit site
	Introduction to C-13 Spectroscopy	
	Theory of C-13 NMR Interpretation of C-13	
	Spectra Problems solving strategy Discussion	
Mask 07.00	1D spectroscopy and 2D spectroscopy	Ndial France
Week-07-08	Fundamental 2D NMR techniques COSY	
	HETCOR HMBC HSOC	
March 00.10	General Introduction of IR Spectroscopy	A seise mant 2
week-09-10	Types of Molecular rotations Why	Assignment 3
	Molecules rotate? Factors affecting	
	molecular rotation. Types of IR Spectra	
	Regions of IR Spectra Important functional	
	groups and their IR absorption bands.	
	Discussion and Interpretation of different IR	
	Spectra.	
Wook 11 12	Mass spectrometry Mass spectrometers	Assignment A
VVCCK-11-12	Ionization techniques Different	
	tragmentation patterns Structure	Quiz-03
Week-13	UV introduction.	Assignment 5

		Quiz-04
Week 14-15	Combined use of UV, IR, NMR & Mass spectrometric data for structure elucidation of organic compounds having basic complexity Presentations	
Week-16	Recapping the course/ Discussions/ Final Exam	