

Course Name: Introduction to Artificial Intelligence				
Course Code: COMP 360	Course Type (major)	Course Credits:	3 (2+1)	
Class Timings: 9:00-11:00	Section: C	Student Meeting TR 8:30-9:00 TR 3:00-5:30	Hours/ Office Hours:	
Instructor Name: Maria Tamoo	or			
 A Note from the Instructor: All lectures and related material will be uploaded on Moodle and Google drive weekly. Assignments / home works will be uploaded on Moodle and students will submit them using same. All emails regarding the course should be sent through official FCC student email account and should have subject line starting as "COMP360-A" 				
Instructor Contact Details Email: mariatamoor@fccollege.edu.pk Whatsapp group: will be announced Guidelines for contacting instructor: you can appointment for some other day via email				
Course Description : An introductory course of AI techniques for students who have not previously had an exposure to this subject Pre-requisites if any: Data Structures, Stats (Exposure to calculus, linear algebra and probability a plus)				
Main Mode of Instruction: in person, Moodle and Zoom Technology Requirements Check moodle on daily basis, internet is required to access material Considerations for Students with Limited Internet/Technology Access: you need to inform in prior about limited access to internet to instructor.				
 Course Objectives or <u>Student Learning Outcomes (SLOs)</u> Apply the basic principles, models, and algorithms of AI to recognize, model, and solve problems in the analysis and design of information systems. Analyze the structures and algorithms of a selection of techniques related to searching, reasoning, machine learning, and language processing. Demonstrate awareness and a fundamental understanding of various applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models 				

Textbook: S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 3rd edition.
 eBook link: <u>https://cs.calvin.edu/courses/cs/344/kvlinden/resources/AIMA-3rd-edition.pdf</u>

Reference books:

- 1. Artificial Intelligence for Humans, Volume 1: Fundamental Algorithms eBook link: <u>http://matt-versaggi.com/mit_open_courseware/Artificial_Intelligence_for_Humans/aifh_vol1_fundamental_2013</u> <u>1209.pdf</u>
- 2. Machine Learning, Tom Mitchell, McGraw-Hill, eBook link: https://www.cin.ufpe.br/~cavmj/Machine%20-%20Learning%20-%20Tom%20Mitchell.pdf
- 3. Machine Learning: The New AI (MIT Press Essential Knowledge series) by Alpaydin

	Course Content, Learning Material & Activities Schedule					
WEEK	TOPICS	READING	Labs/Assignments/Homeworks			
1	Introduction and applications of AI	Ch. 1 - 2				
	Intelligent Agents, Behavior,		Lab: Implement BFS, DFS, UCS			
	Environment		Assignment 1: Implement A*			
2	Problem solving by searching	Ch. 3.1 – 3.4	Homework 1: A* and UCS			
	Chimonied search strategy		questions			
3	Informed search strategy, Optimal	Ch. 3.5 – 3.7	-			
	Search: A*	Ch. 4.1-4.3				
	Local search algorithms and					
4	Adversarial search	Ch. 5.1-5.3	-			
-						
5	Logic: Syntax and Semantics	Ch. 6.1 – 6.2	Lab: Do programming in PROLOG			
	Propositional Logic	Ch. 7.1-7.4	Assignment 2: Make family tree in			
	First Order Logic		PROLOG Homework 2. Bayesian Network			
	Programming for AI: Prolog		- Questions			
6	Probability in AI, Dependence	Ch. 8.1-8.5				
	Bayes Rule, Conditional Independence,					
7	Independence	Ch 12 1 12 7	-			
/	Bayesian Network, D Separation	CII. 12.1-12.7				
0	Dayesian Network, D Separation	A: 14 E				
8	ľ	vildterm Exam				
9	Learning: Supervised and	Ch.13.1-13.7				
	Unsupervised		Lab: Implement Naïve Bayes			
	Naïve Bayes classifier, KNN		Classifier			
10	Classification (linear, Decision Trees),		Homework 3. NaiveBayes and			
	Regression		decision trees questions			
11	Clustering HAG		Lab: Implement K mean Clustering Assignment 3: Implement HAG			
12	K means clustering					
13	Artificial neural network		Lab: Implement Neural network			
14	Case based reasoning/Rule based		Project Submission			
	Reasoning					
15	Evolutionary Algorithms: Genetic					
	Algorithms (optional)					
PROJ	PROJECT: PICK ONECLASSFICATION DATASET AND APPLY NAÏVE BAYES, DECISION TREES					
	AND NEURAL NETWORK. COMPARE RESULTS USING DIFFERENT GRAPHS AND TABLES					

'Out-of-class' Study Required: Following are the best practices to succeed in this course:

- View video lectures before class time
- Check moodle and your course Whatsapp group regularly
- Atleast spend 3 hours at home for reading from book also.
- Do all assignments and homeworks yourself

The breakup is as follows:

10 %
10 %
25 %
30 %
15 %
10 %
100%

Missed Assignments/ Make-Ups/ Extra Credit

- Late assignments will be accepted with 50% deduction
- No retake of quiz or exam unless approved.

Grade Determination & Course Assessment as per FCC Policy:

Relative grading will be done so giving your solved assignments and homeworks to your friends can have negative impact on your grade

Changes to the Syllabus:

This syllabus was designed to convey course information and requirements as accurately as possible. It is important to note however that it **may** be subject to change during the course depending on the needs of the class and other situational factors. Such changes would be for your benefit and you will be notified of them as soon as possible.

Student Support Services

<u>Student Counseling Services</u>.Students can contact the <u>Campus Counseling Center</u> at 0331-444-1518 or email <u>ccc@fccollege.edu.pk</u>. <u>Writing Center</u> Mercy Health Center

Other Useful FCCU Policy Documents:

Sexual Harassment Policy Anti-Corruption Policy Academic integrity Plagiarism Policy Academic Calendar